
Optimal monetary policy, least squares
learning, and the zero bound to interest rates

February 18, 2019

Petr Harasimovič
Loughborough University

Anthony Yates
City University of London and Centre for Macroeconomics

Abstract
We revisit the question of optimal monetary policy at the zero

lower bound by modifying the workhorse assumption of rational ex-
pectations used in most previous analysis to instead assume that ex-
pectations are formed using a constant gain least squares learning
algorithm. The main result is that, unlike in the case of RE, there is
no tendency for optimal policy at the zero bound to imply an over-
shooting of the inflation target. Under RE, expected future over-
shooting provides an additional stimulus by lowering the real rate. In
our model, overshooting risks destabilising belief coefficients in future
periods and so the policy maker foregoes this.
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1 Introduction
This paper computes optimal interest rate policy in a widely studied
New Keynesian sticky price model of the business cycle, but where the
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more usual assumption that expectations are model-consistent (often
dubbed ‘rational’) is replaced with the assumption that agents form
expectations using constant-gain, least-squares learning algorithms.
In addition, optimal policy is studied when the central bank policy-
maker faces the constraint that interest rates cannot be reduced below
their natural floor of zero. Since several economies in the developed
world have hit the ZLB recently (e.g. Japan in 1999, UK and US
in 2008, or later the Eurozone, Sweden, and Norway), studying the
design of optimal monetary policy in a liquidity trap has become of
paramount importance for policy makers and not just an academic
matter. Although the US and the UK have begun a lift-off from the
zero lower bound, the question is still germane, since the length of
the zero-lower-bound experience made the central banks more aware
of the risks of hitting the bound gain. Our analysis thus contributes
to the literature on this subject that has flourished recently.

The paper thus hopes to make useful comparisons with two sepa-
rate strands in the previous literature on monetary policy design. The
first is the literature on optimal monetary policy in the face of the
ZLB but when expectations are rational. The classic reference here
is Eggertsson and Woodford (2003) (EW). In this paper, the authors
compare the dynamics of the central bank instrument and inflation
under increasingly large shocks to the natural rate of interest that
threaten to take rates to the ZLB, and, at some point, cause the ZLB
to bind. They observed that as the size of the shock increased, the
response of rates under optimal policy became one where rates were
lower, for longer. Consequently, in response to shocks in which the
ZLB was in play, the central bank allowed a corresponding overshoot
of inflation from target.

‘Lower for longer’ meant that interest rates would be lower, propor-
tionately, than in the case where the ZLB did not bind, and, likewise,
‘for longer’ referred to the fact that rates would be away from steady-
state for longer. This result became a reference point for central banks
facing the ZLB during the recent crisis, who engaged in forms of what
they often described as ‘forward guidance’ over future interest rates.
Typically, those central banks kept some degree of scepticism and re-
sisted encouraging the expectation that they would tolerate a future
overshoot of their inflation targets, but nevertheless, the EW result
was influential in pushing central banks to explain why they thought
that EW’s prescriptions should not be followed to the letter. Our
findings suggest that the caution on the side of the central banks was,
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indeed, justified if one did not have enough trust that the public had
fully rational expectations.

The crux of EW’s advice was that, in the face of being unable to
reduce current interest rates further, due to the ZLB, a central bank
acting credibly could commit to lowering future interest rates instead.
With such a promise factored into the expectations of rational agents,
this would drive today’s expected inflation rate up, lower the real rate,
and increase demand and the output gap. Through the Phillips Curve
then, today’s inflation rate would also increase. Even though such a
promise came at the cost of a future inflation overshoot, this, up to a
point, would be worth it for the sake of curtailing the undershoot in
inflation and the output gap experienced today.

Following EW, Adam and Billi (2006, 2007) extend the analysis
to a model with uncertainty and both with and without commitment.
Their model is the closest rational expectations counterpart to our
model. Werning (2011) then analyzes optimal policy at the zero lower
bound in conjunction with fiscal policy in a model cast in continuous
time.

Rather obviously, the efficacy of EW’s policy advice depends on
the extent to which agents can be taken to behave as though they
form rational expectations. If agents do not form their expectations
by computing model-consistent forecasts, including therefore correct
assumptions about the element of the model that corresponds to poli-
cymakers’ behaviour, then vocal commitments to future lower interest
rates will be in vain. We use the model of least squares learning pop-
ularized by the likes of Bray, Sargent and Marcet, and Evans and
Honkapohja.1 Our contribution, therefore, is to see how optimal pol-
icy in the face of the ZLB compares when the assumption of rational
expectations is replaced with one in which agents form expectations
using least-squares learning algorithms and which is generally consid-
ered a small departure from rational expectations. The precise form
we use nests the rational expectations equilibrium (REE) and, with-
out the ZLB, we observe a convergence to it.

Our main contribution is to show that with this mild departure
from rational expectations there is little to no tendency for inflation
to overshoot, in fact, the amount of inflation that the optimal policy
generates is lower for longer episodes of binding ZLB, while in EW the
opposite is the case. Nevertheless, somewhat surprisingly, the above-

1. See e.g. Bray (1982), Marcet and Sargent (1989), and also Evans and Honkapohja
(2001) for a review of the early literature.
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mentioned lower-for-longer result of EW still holds in some ways: in
response to negative shocks, and in the presence of the ZLB, the
interest rate is lowered more aggressively, it reaches the ZLB sooner,
it is kept at the bound for longer, and it returns to pre-shock levels
slower than in the absence of the ZLB. The central bank is not willing
to tolerate excessive inflation though. Thus, one could perhaps say
that the interest rates are lower for longer but that they are not very
much lower and for not very much longer.

Our results also address and contribute to the prior literature on
the design of monetary policy that has made use of the sticky-price
business cycle model with expectations formed using learning. First,
we are the first in this literature, so far as we can tell, to add the
ZLB into the analysis. Second, even leaving the zero bound aside, our
work complements and contributes to prior work in a number of ways.
Notable prior papers – none of which consider the ZLB – are Gas-
par, Smets, and Vestin (2006) and Molnár and Santoro (2014). Prior
to these two papers, there were several papers that studied sparsely
parameterised, simple Taylor-like policy rules in a New Keynesian
model with expectations formed using least squares learning (e.g. Or-
phanides and Williams 2008). Relative to that literature, our paper
offers computations of fully optimal policy.

Molnár and Santoro (MS) generate analytical results on optimal
monetary policy in the presence of ‘cost push’ shocks, but at the price
of simplifying the learning algorithm somewhat. In their model, there
is a recursion over agents forecasts (so called steady state learning),
whereas we adopt the framework of Evans and Honkapohja (2001) in
which there is a recursion over agents forecasting functions. Compared
to MS, we find that, outside the rational expectations equilibrium, the
demand shock introduces a policy trade-off making it a relevant policy
consideration. Such a trade-off does not occur in models with rational
expectations and, as far as we know, we are the first to observe it in
a model with learning.

Gaspar, Smets, and Vestin (2006), like us, derive optimal mon-
etary policy using numerical methods but they simplify the model
in two respects relative to our work. First, they characterise mon-
etary policy as a choice over the output gap (in the absence of the
zero lower bound, this is without any loss of usefulness or generality,
in fact). Second, their agents form expectations using an evolving
AR(1) relating inflation to its lag, whereas our agents use recursions
over two functions that link future inflation and future output to the
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shock, the form that nests rational expectations.
Our work is also related to studies of deflationary traps which

may occur due to a binding effective lower bound in models where
the policy maker uses a simple Taylor-like rule both with rational
expectations and with least squares learning.2 In comparison, our
policy maker uses fully optimal policy. Although, we do not focus
specifically on the question of the existence of a deflationary trap in
our setup, we emphasize the parallel between the optimal policy in
our model and the aggressive monetary policy rule of Evans, Guse,
and Honkapohja (2008).

Besides adaptive learning, our work is, more generally, related to
the literature which analyzes government policies under the assump-
tion of bounded rationality. One such strand of literature, which is
gaining popularity, uses level-k thinking. For recent examples see
Farhi and Werning (2017) and Iovino and Sergeyev (2017), who an-
alyze the effectiveness of forward guidance and quantitative easing,
respectively. Both adaptive learning and level-k thinking converge
to the rational expectations equilibrium, under some conditions, and
thus, from all the ”wilderness” of bounded rationality approaches,
these are reasonable attempts at relaxing the strict rational expecta-
tions assumption.3 Compared to level-k thinking, econometric learn-
ing is purely backward looking and, hence, we deal with the extreme
case of complete ineffectiveness of policy announcements.

To summarize our main findings, we observe that, in contrast to
EW, the policy maker does not allow as much inflation overshooting
and the optimal policy becomes more restrictive the longer the pe-
riod of binding ZLB. Nevertheless, similarly to EW, the constrained
central bank responds to negative demand shocks disproportionately
more than its unconstrained counterpart, it reaches the ZLB sooner,
it keeps the interest rate at the bound for longer, and it allows slower
convergence back to pre-shock levels. At times when the ZLB is not
binding, the central bank follows an over-aggressive policy to create
counter-cyclical expectations as a means to alleviate the cost of a
potential liquidity trap.

Without the effective lower bound in place, we find that the econ-
omy converges to the rational expectations equilibrium, despite the
fact that our agents use constant gain learning, and in response to

2. See Benhabib, Schmitt-Grohé, and Uribe (2001), Evans and Honkapohja (2005), and
Evans, Guse, and Honkapohja (2008).

3. The term ”wilderness” comes from Sims (1980).
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demand shocks, when not in the REE, the central bank faces a policy
trade-off between inflation and output. The latter property contrasts
with models with rational expectations and has previously not been
recognized in models with learning.

The rest of the paper is organized as follows. In section 2 we
present the model, in section 3 we discuss calibration and give a brief
overview of the computational procedure, leaving the details for the
appendix. Sections 4 and 5 discuss the results for the benchmark and
alternative calibrations, respectively, and section 6 contains conclud-
ing remarks.

2 The Model
As the model framework we use the, now stylized, New Keynesian
3-equation sticky-price model in its linearized form. The model con-
sists of two structural equations dubbed Phillips curve (PC) and IS
curve (IS) and a monetary policy rule equation (MPR). Using nota-
tion standard in the literature the IS and PC equations can be stated
as

πt = βEtπt+1 + κxt + επt (1)
xt = Etxt+1 − σ(it − Etπt+1) + εxt . (2)

Equation (1), the Phillips curve, relates the deviation of quarterly
inflation from its steady state value, πt, to discounted expected future
inflation, and the output gap, xt. The gap concept here, in line with
the New Keynesian literature, denotes the difference between output
that would obtain under flexible prices and actual output. This equa-
tion emerges as an approximation to optimal price-setting by firms
in the presence of price-stickiness in the tradition of Calvo (1983)
and Rotemberg (1982). The equation includes an inflation shock, επt ,
which has the interpretation of a shock to desired mark-ups (cost
push shock) in the original nonlinear model to which this equation is
an approximation.

Equation (2), the IS curve, is an approximation to the aggregate
consumption-Euler equation and it draws the link between the central
bank’s interest rate, it, and the output gap. The IS curve also includes
a shock, εxt , which is to be interpreted as a shock to the natural rate
of interest, or, equivalently, a technology shock.
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The shocks are both assumed to follow a stationary AR(1) stochas-
tic process of the form4

επt = ρπε
π
t−1 + ηπt , ηπt ∼ iidN(0, σ2

π) (3)
εxt = ρxε

x
t−1 + ηxt , ηxt ∼ iidN(0, σ2

x) (4)

where ηπt and ηxt are the innovations with variances σ2
π and σ2

x,
respectively.

Conventional applications posit rational expectations but we as-
sume that agents form their expectations using a least-squares learn-
ing recursion. The expected values of Y ≡ [π, x] are thus given by

Et[Yt+1] ≡ Et

[
πt+1

xt+1

]
= At

[
επt
εxt

]
, (5)

where A is a matrix of expectations coefficients.
If we substitute agents’ beliefs (eq. 5) in equations (1) and (2) we

can write the IS and PC curves compactly as

Yt = B−1Dit +B−1(CAt + F )εt, (6)

with

B =

[
1 −k
0 1

]
, C =

[
β 0
σ 1

]
, D =

[
0
−σ

]
, F =

[
1 0
0 1

]
, ε =

[
επ
εx

]
. (7)

The expectations matrix, At, evolves over time according to the
following learning recursion

At+1 = At + γR−1
t+1εt(Yt

T − εt
TAt

T) (8)
Rt+1 = Rt + γ(εtεt

T −Rt). (9)

In this system there are two exogenous state variables, stacked in
the vector εt, and the endogenous states comprise the four elements
of matrix At and the four elements of matrix Rt, the moment matrix.
Since the two-shock version of the model is nearly intractable once
the zero lower bound is assumed, we disregard the inflation shock. In

4. Often in the literature the shocks are iid, however, for an analysis of the zero lower
bound we need the model to exhibit some form of persistence. Using AR(1) shocks is
a cheap way of achieving this. Two alternatives, often found in the literature, would be
using inflation indexation and habit formation. Both would however increase the number
of state variables and hence increase the computational cost.
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this case the system comprises of two elements of At, one element of
Rt, and one shock, the technology shock εxt .5

The motivation for using the learning recursion as described by
equations (8) and (9) as a small departure from rational expectations
comes from the fact that if we set γ = 1

t , an assumption known as
decreasing gain, agents will, in some circumstances, learn the rational
expectations functions. Our assumption of constant gain means that
agents are forced to inappropriately downweight data early in the
sample (the observations are weighted geometrically) thus they can
never learn the rational expectations equilibrium. Such an assumption
resembles the idea of a rolling window regression and the motivation is
that either agents suspect (incorrectly) that there might be structural
change in the economy, and thus older data are less relevant, or that
they have short memories, or insufficient processing facilities to handle
long time series.

To close the model we need to specify a monetary policy rule
(MPR), which is the remaining equation in the 3-equation model.
Typically the MPR takes the form of a simple, Taylor-like, rule but
here we focus on the problem of choosing the interest rate opti-
mally. Therefore the interest rate is given by the central bank’s
policy function, h(At, Rt, εt), which determines the interest rate as
a function of current period state variables – the beliefs and moment
matrices, At and Rt, and the shocks, εt. This function is derived
from the central bank’s preferences represented by the loss function
L(πt, xt) ≡ π2

t + λx2t , where λ is the weight the policy maker puts on
stabilizing output relative to inflation.

This loss function is not purely ad hoc as it has micro-foundations
in the New Keynesian model with rational expectations. As observed
by Woodford (2003), under rational expectations, the use of the weight
λ = κ

θ (i.e. proportional to the strength with which changes in the
output gap induce changes in inflation) renders this criterion func-
tion one that maximises the welfare of the representative agent in
this economy.6 This will not be precisely true in our economy under
learning, but we use this assumption nonetheless presuming it to be
a reasonable approximation and to make the problem tractable. It

5. There are techniques for solving medium and large scale models, e.g. Smolyak inter-
polation or the Generalized Stochastic Simulation Algorithm of Judd, Maliar and Maliar,
but those are based on low-order polynomial approximation, which generally does not
work very well when the policy function contains a kink.

6. See Woodford (2003), section 6.2.
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also allows us to make our results comparable to prior work in the RE
and non-RE traditions, which have used criterion functions for policy
makers of the same kind.

When setting the interest rate the policy maker is constrained by
the presence of the zero lower bound on the nominal interest rate
given by the rate of return on money. Due to the fact that economic
agents always have the option to hold their wealth in money, which
yields zero return, the interest rate cannot be lowered below this level.
Since the model is expressed in terms of log deviations from the (zero
inflation) steady state and the steady state interest rate is positive, the
zero lower bound is not zero but to be interpreted as the log deviation
from the steady state interest rate that would bring the gross nominal
rate of interest to its lower bound of one. Thus the value of the zero
lower bound in terms of this log deviation is given by − log( 1β + π∗),
where π∗ is the central bank’s inflation target (hence the steady state
rate of inflation).7

Our central bank policy maker then seeks to minimise the loss
function taking the New Keynesian model equations, the learning re-
cursions, and the zero lower bound as constraints. We assume that
unlike private agents the central bank has rational expectations. This
assumption is relatively common in the literature and can be moti-
vated by the apparent informational advantage of central banks over
the private sector coming from the large amount of resources, namely
human capital, central banks typically dedicate to understanding the
economic environment. The policymaker’s problem is formally stated
as

min
{it}∞t=0

{
E0

[ ∞∑
t=0

βt(π2
t + λx2t )

]}
(10)

subject to (1), (2), (4), (8), (9), the zero lower bound it ≥ iZLB

and the initial conditions A0, R0, and ε0 (we disregard the inflation
shock as mentioned earlier).

It can be represented in its recursive form by the following Bellman
equation (where we have collapsed the state variables in the vector
z = (a1, a2, r, ε) and a1, a2 are elements of A in equation (5))

7. We use the approximation to Fisher’s equation of 1 + i = 1 + r + π when deriving
the value of ZLB. Also, see the calibration section for the discussion of the apparent
contradiction of using positive inflation target while linearizing the model around the
zero-inflation steady state.
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V (z) = min
i

{
L(z, i) + βE

[
V (z′)|ε

]}
, s.t. (11)

L(·) = π2 + λx2 (12)
π = −σκi+ [(κ+ (β + σκ)a1 + κa2]ε (13)
x = −σi+ [1 + σa1 + a2]ε (14)

a′1 = a1 +
γ

r′1
ε[π(z, i)− a1ε] (15)

a′2 = a2 +
γ

r′1
ε[x(z, i)− a2ε] (16)

r′ = r + γ(ε2 − r) (17)
ε′ = ρε+ η, η ∼ iidN(0, σ2

ε) (18)

where primes denote next period variables, π(z, i) and x(z, i) are
shorthands for (13) and (14) and ε is the shock to the natural interest
rate as in equation (2). Equations (15) – (18) define the transition
function g(z, i).

The solution of this problem is the central bank’s policy function
h(z) minimizing the social welfare loss. The central bank bases its
policy on the shock as well as the current state of agents’ expectations
and it is aware of the effects of its decisions on future expectations.
At the same time, due to the backward looking nature of agents’
expectations, it can only affect future expectations through the choice
of its current instrument, the short-term interest rate, and it does not
have access to tools like forward guidance which would affect future
expectations directly and which a central bank facing agents with
rational expectations could use.

3 Computation and Calibration
In this section we briefly describe the computational procedure and
discuss calibration. The interested reader can find details of the com-
putational procedure in the appendix.

3.1 Computational Procedure
The model does not have an analytical solution and, although it is
based on a linearized version of the New Keynesian model, the learn-
ing recursions and the zero lower bound constraint make the model
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highly non-linear. We therefore have to resort to non-linear numerical
methods. This section contains a brief description of the numerical
procedure we use and we defer the presentation of the algorithm and
the discussion of the details of individual steps to the appendix.

We approach the central bank’s problem with the traditional tools
of value function iteration. We discretize the state space, which in-
volves approximating the continuous AR(1) stochastic process for the
shock by a Markov chain, and for each grid point we minimize the
right-hand-side of the Bellman equation (11) using a numerical opti-
mization procedure (we use the Golden Section Search method, which
is somewhat slow but robust). We then iterate the Bellman equation
until convergence. To approximate the unknown functions – the value
function V (·) and the policy function h(·) – between the grid points we
use cubic spline interpolation. With these choices we subject ourselves
to the ’curse of dimensionality’ problem, however, they are dictated by
the presence of the zero lower bound constraint, which causes a kink
in the policy function. Using low-order polynomials (e.g. Cheby-
shev polynomials) would be an attractive alternative, especially when
coupled with a sparse grid interpolation scheme like Smolyak interpo-
lation.8 Unfortunately the low order polynomials are known to handle
kinks in the decision rules rather poorly and therefore we decided to
use the slower but more flexible splines.9

To assess the optimal response of the central bank to an unan-
ticipated disturbance to the natural interest rate once the model is
solved and the optimal decision rule h(·) obtained, we do not use the
standard tool of a linear impulse response function employed in linear
models since non-linear models produce impulse responses which are
history- and shock-dependent as discussed in Potter (2000). Instead
we follow the approach of Gallant, Rossi, and Tauchen (1993) who
develop the notion of a non-linear impulse response function (NIR).10

8. See e.g. Krueger and Kubler (2004) and Judd et al. (2014)
9. This we experienced ourselves when we experimented with Chebyshev polynomials

based Smolyak interpolation in the 2-shock version of the model.
10. See also Potter (2000) and Koop, Pesaran, and Potter (1996), who generalize the

concept of a non-linear impulse response and call it a generalized impulse response (GIR),
or more recently Gourieroux and Jasiak (2005). We, however, use the term GIR in the
sense of Gallant, Rossi, and Tauchen (1993), who use it to describe some sort of aggregate
over the distribution of the NIRs. In particular they suggest to average the NIRs over
initial conditions. We use the term GIR to refer to any aggregator we may use (most often
the median response).
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The procedure for calculating a non-linear impulse response is as
follows. We use a large number of simulations to simulate the economy
for a large number of periods and for each of these simulations we store
the state variables from the last period.11 This gives an ergodic set
for this economy, which will be used as the set of initial conditions.
Then for each element in the ergodic set we run two simulations using
the same series of random shocks except in the first period the shock
in one of the two simulations differs by an impulse δ. For each initial
condition we repeat this step many times using different sequences of
shocks and calculate the median across the multiple runs.12 Following
Gallant, Rossi, and Tauchen (1993) the NIR is then the net effect of
the impulse and it is defined as the difference of the model variables
between the two simulated (median) trajectories. Clearly the impulse
responses depend on the state of the economy at the time of the
impulse, in addition to the future shocks, reflecting the non-linearities
in the system, therefore we report the (cross-sectional) average as
well as the median responses and several other quantiles of interest
(typically the lower and upper quartiles).

To solve the central bank’s problem and to calculate the impulse
responses we use Fortran with OpenMP parallelization and we run
the codes on a machine with sixteen 2.6 GHz Intel SandyBridge pro-
cessors and 64 GB of RAM. On this machine, using Intel Fortran
compiler with the -O3 flag, it takes about 6-10 hours to solve the CB
problem depending on parametrization. For some experiments, typi-
cally involving either high β, high ρ or low σ, solving the CB problem
can take over 20 hours. Calculating the ergodic set and a long simula-
tion takes about two minutes each and calculating the distribution of
impulse responses to one impulse takes about 15 minutes.13 Overall,
solving the CB problem and calculating the complete set of exper-
iments for the benchmark parameterization takes approximately 30
hours. Occasionally, when experimenting with the best settings, we
had to use a high memory machine with 256 GB of RAM.

11. By a large number we mean dozens of thousands; the appendix contains more details
on the computational procedure including the parameter choices.

12. Gallant, Rossi, and Tauchen (1993) use the average, however, we found that, due to
the ZLB, the average provides very distorted view of the dynamics and does not capture
well the non-linearities occurring around the zero lower bound.

13. This crucially depends on the parameter R (see appendix).
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3.2 Calibration
Before we are able to solve the model numerically we need to set the
model parameters. Our chosen values are relatively standard and are
summarized in table 1.

Table 1: Calibration

Parameter Value Description

β 0.99 subjective discount rate
σ 1 IS slope
α 0.66 Calvo pricing parameter
θ 7.66 price elasticity of demand for intermediate goods
ω 0.47 elasticity of marginal cost
κ 0.057 PC slope
λ 0.007 welfare weight
π∗ 0.004693 inflation target
γ 0.03 constant gain
ρ 0.9 shock persistence
ση 0.004 std of shock innovations

As the model period we choose one quarter. The value of β is cho-
sen to match the average annual real rate of interest of 4%. The value
of σ is common in the recent literature on the zero lower bound and
it comes from the real business cycle tradition. Yet a few comments
are in order. Adam and Billi (2006), following Rotemberg and Wood-
ford (1998), set σ = 6.25 using the argument that a higher value of σ
may capture some unmodelled interest rate sensitivity of investment
demand. We, however, find that with the value of σ so high the ZLB
ceases to bind and becomes irrelevant for the conduct of monetary
stabilization. Eggertsson and Woodford (2003) on the other hand use
σ = 0.5 in order not to exaggerate the output losses when the ZLB
becomes binding if σ were too high. Very low values, however, restrict
the ability of the central bank to avoid the ZLB as larger increases in
the interest rate are required when facing a negative shock of a given
size thus effectively bringing the ZLB closer.

The slope of the Phillips curve, κ, captures the details of the firms’
price setting process. We assume Calvo pricing, under which κ be-

13



comes14

κ =
(1− α)(1− αβ)

α

σ−1 + ω

1 + ωθ
, (19)

where α is the proportion of firms who cannot change their prices in
the current period, ω is the output elasticity of the firm’s marginal
cost, and θ is the price elasticity of demand for the firm’s goods. The
values of α, θ, and ω are taken from Rotemberg and Woodford (1998)
and the same values are used in Adam and Billi (2006).

The welfare weight in the central bank’s loss function is given by
λ = κ

θ as discussed in section 2 and the calibrated value follows from
our choice of κ and θ. We will, however, explore the sensitivity of the
results to alternative weights to reflect on some of the more practi-
cal central bank research which has tended to use non-microfounded
welfare weights.

The shock persistence parameter, ρ, we take from Fernández-
Villaverde et al. (2015) but, compared to them, we set the standard
deviation of the innovations, σε, to a higher value. With their value of
0.0025 the ZLB rarely binds in our simulations, which makes it an al-
most irrelevant policy consideration. We therefore need the stochastic
process to exhibit more volatility, which could be achieved by choosing
either higher σε or higher ρ. We decided to increase the volatility of
the innovations and explore the effect of higher persistence in the ro-
bustness section. The chosen value of σε still falls in the range typical
in the RBC literature and, perhaps even more importantly, it results
in a fraction of periods spent at the ZLB, in our simulations, that we
consider reasonable. There is no clear consensus in the literature
on how often the ZLB should bind, nevertheless, our value of 5.9% of
periods spent at the ZLB is comparable to a number of recent papers,
e.g. Fernández-Villaverde et al. (2015) and Gavin et al. (2015), who
report the ZLB binding in over 5% of the periods.

The π∗ parameter affects the allowable maximum negative devia-
tion of central bank interest rates from the steady state. It is chosen
to match an inflation target of 2 percent annually. We choose a pos-
itive inflation target despite the fact that the model equations (1)
and (2) have been linearized around the zero-inflation steady state.
Linearizing the model around a steady state exhibiting positive trend
inflation would require taking account of the effect of price dispersion
as Ascari and Sbordone (2014) demonstrate. This would alter the

14. See Woodford (2003), chapter 3 for details.
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Phillips curve equation (eq. 1) and introduce an additional equation
describing the law of motion for price dispersion.

We would argue that steady state inflation of 2% is still sufficiently
small to be treated as an acceptable approximation. There are two
advantages of this approach: it allows a comparison of our results
to the existing literature and it increases the tractability of the prob-
lem. From the point of view of our numerical solution procedure using
the properly microfounded Phillips curve as in Ascari and Sbordone
(2014) would require adding two more state variables to our model
– a measure of price dispersion and the expectations coefficient as-
sociated with it. This would increase the number of state variables
from the current four to six, imposing a significant penalty in terms of
the number of grid points required to solve the policy maker’s prob-
lem.15 Although still tractable, the curse of dimensionality problem
would severly impact the performance of our algorithm. We leave the
analysis of optimal policy with trend inflation for future research.

The gain parameter, γ, is arguably the key parameter in our model.
There is some uncertainty over the estimates for this key parameter
in the literature, see e.g. Orphanides and Williams (2008) for a brief
discussion. Our value is slightly higher than theirs but it still falls in
the range of typical estimates. Values much higher than this tend to
lead to the learning recursions exploding frequently and values much
below this tend to eliminate fluctuations in expectations formation.
We nevertheless explore the sensitivity of our results to the choice of
alternative values of this parameter below.

4 Results
In this section we present the results of our calculations. We start with
a discussion of the long-run properties of optimal policy and then we
focus our attention on the optimal response to shocks.

4.1 Long-run properties of optimal policy
We proceed in two steps. More as a test of our computer code, we
present the results for an economy that has never been exposed to

15. If we were similarly conservative in the choice of the number of grid points in each
dimension as we were for the present version of the model, then the number of grid points
would increase by two orders of magnitude to the total of about 15 million points
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the zero lower bound, then we discuss the long-run effects of the zero
lower bound and contrast them with the previous case.

4.1.1 Without ZLB

As is well known, in the model with rational expectations without
the zero lower bound the demand shock does not introduce a trade-
off between inflation and output.16 Therefore the central bank can
minimize both gaps at the same time by following the changes in the
natural interest rate one-to-one and thus offsetting the shock perfectly.

In a model with learning, however, expectations are not anchored
by the rational expectations equilibrium, therefore, in addition to
the demand shock, the central bank needs to respond to changes
in agents’ expectations. This can make the central bank’s task of
stabilizing the economy more difficult and can potentially make the
one-to-one response known from the rational expectations world sub-
optimal. Nevertheless, in a model with learning, similar to ours, Mol-
nár and Santoro (2014) observe that in the case of a demand shock
the central bank is able to stabilize the economy perfectly under all
circumstances.17 Similarly to them, we find that in our model the cen-
tral bank can stabilize the economy in the long run but, in contrast,
we find that if expectations deviate from the long-run equilibrium
then the central bank’s optimal policy deviates from the one-to-one
response.18

The long-run outcome is demonstrated in figure 1, which shows the
probability density functions estimated from the simulated ergodic set
(see appendix A.4 for details).19 The densities reveal that, without
the zero lower bound, also in our model the central bank can stabi-
lize the economy very well in the long run. Since the agents expect
the inflation and output gaps to be zero, which can be seen by the
expectation coefficients densities being degenerate,20 the central bank

16. See e.g. Clarida, Gali, and Gertler (1999).
17. Technically, in their model the demand shock does not affect the first-order condi-

tions.
18. We call long-run equilibrium a set of allocations with x = π = a1 = a2 = 0. Such

allocations are supported by i = ε
σ

19. The densities were estimated by a Kernel Density Estimator with Gaussian kernel
using the implementation from the python SciPy library (see https://docs.scipy.org/doc/).

20. In fact, due to computer arithmetics, the coefficients are not exactly zero but of the
order of ±1e−10 and lower.
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Figure 1: Ergodic distributions for the nonZLB economy
The densities were calculated from a sample of 25000 observations using Gausian kernel
density estimator.
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Figure 2: Simulated convergence from an arbitrary state towards the long-
run equilibrium in an unconstrained economy. The initial condition is the
median state from the ergodic set of the constrained economy, see table 2 for
the exact values.

responds one-to-one to the demand shock21 and this allows it to keep
both gaps at zero. And since the CB keeps the gaps closed the agents
learn that monetary policy does stabilize the economy and, therefore,
expect both gaps to be zero. The expectations coefficients are thus
zero too. As a result, once expectations converge to zero the inter-
est rate follows the pattern of the stochastic process of the demand
shock, in particular, the estimated densities of the interest rate and
the demand shock coincide (the latter not shown).

If the expectations deviate from the long-run equilibrium, however,
the one-to-one response is no longer optimal. Figure 2 sheds some
light on the role of expectations for optimal policy. It shows a sample
simulation starting from the median state of the constrained economy,
which is not in the ergodic set of the unconstrained one, and illustrates
convergence towards the long-run equilibrium.

Since the expectations coefficients are initially negative, we would
expect the central bank to change the nominal interest rate less than

21. More precisely, due to the way we calibrate the model, the central bank changes the
interest rate by a 1

σ multiple of the change in the shock. For the benchmark calibration
this means a one-to-one response.
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one-to-one with the shock (with positive coefficients we would expect
a more-than-proportional response) and over time, as expectations
adjust, we would expect the optimal policy to converge to the one-
to-one type of policy prevalent in the long run. This is exactly what
we see in the top panel of figure 2. With negative expectations co-
efficients, a negative demand shock creates expectations of positive
inflation and output gaps, hence, to neutralize the effect of the shock
the central bank does not have to lower the interest rate as much as
would be necessary if the agents were expecting the central bank to
stabilize the economy fully.

However, the bottom panel of figure 2 shows that optimal policy
does not actually offset the shock completely, allowing inflation and
output to deviate from their steady-state values. In fact the plot sug-
gests that the central bank may be facing a trade-off between inflation
and output. To verify these observations, in figure 3 we present the
impulse responses to a large shock. The plot shows that if the shock
occurs outside the long-run equilibrium the central bank does not re-
spond to the shock one-to-one, moreover, it does not fully stabilize
the economy due to a trade-off between inflation and output, which is
apparent in panels 2 and 3 even though the effect seems to be rather
small. The existence of such a trade-off appears to be robust to both
the size and the sign of the shock as well as a wide range of initial
conditions.22

This observation is new in the literature, as far as we are aware.
Adam and Billi (2007) observe a policy trade-off in the case of a con-
strained central bank which has not reached the lower bound yet. In
their model, this is explained by the combination of the lower bound
distortions and the presence of a mark-up shock. In our model, how-
ever, there is no mark-up shock and this trade-off occurs in the case of
an unconstrained central bank rather than the constrained one. The
trade-off is caused by the departure from the assumption of ratio-
nal expectations and manifests itself when the economy has deviated
from the long-run equilibrium. Interestingly, we do not observe the
occurence of this trade-off in the case of a constrained central bank
which has not reached the lower bound yet (see section 4.2.1).

We now turn to the discussion of the effects of the zero lower
bound.

22. We tried shocks of various sizes ranging from 0.1σε to 4σε and the trade-off is apparent
across the whole ergodic set of the constrained economy (see also Figures 10 and 7).
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Figure 3: Generalized impulse response without the zero lower bound.
The impulse has the size of −2.5σε and for the off LR equilibrium paths the initial condition
is the ergodic set of the contrained economy.

4.1.2 With ZLB

When the central bank is constrained by the zero lower bound it can
no longer stabilize the economy in the long run. This can be seen by
the fact that the estimated densities shown in figure 4 are no longer
degenerate and that there is large dispersion of both the gaps and the
expectations coefficients.

The failure of the central bank to stabilize the economy is no sur-
prise, of course. In times when the zero lower bound becomes binding
the central bank cannot prevent negative inflation and output gaps,
which, in turn, leads to agents expecting the central bank to fail to
stabilize in the future too. Consequently, the expectations coefficients
start increasing and eventually, if the liquidity trap situation persists,
become positive. As discussed in the previous section, when expec-
tations deviate from the long-run equilibrium, an optimally behaving
central bank opts for imperfect stabilization even in times when the
ZLB is not binding. Therefore, the change in expectations induced
by the binding ZLB magnifies its destabilizing effect. Since the ZLB
becomes binding relatively often, this causes substantial deviations
from the long-run equilibrium.

Figure 5 gives an illustration of the dynamics, the destabilizing
effect of prolonged periods spent at the ZLB is especially apparent
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Figure 4: Ergodic distributions for the ZLB economy
The interest rate is shown in Figure 6 and r is independent of the ZLB regime (thus its
density function is identical to the one in Figure 1).

as is the increased volatility of the interest rate that follows – to
alleviate the welfare consequences of the deterioration of expectations
the central bank’s policy becomes a lot more aggressive. Periods of
liquidity trap as long as those in Figure 5 are very rare events though
(see table 2).

An interesting consequence of optimal policy is that the expecta-
tion coefficients are often negative. This can be seen both from the
densities and from the sample simulation. In fact, for inflation the co-
efficient is negative most of the time (compare the mean and median
values in table 2). This is a somewhat unintuitive result, for negative
expectation coefficients mean that after a negative shock agents ex-
pect a boom and above-average inflation. Typically, we have negative
demand shocks associated with deflation and recessions but here the
agents tend to be optimistic about the future instead. The long-run
distribution of interest rates shown in Figure 6 helps to shed some
light on this. As can be seen from the figure, in the presence of the
zero lower bound, the central bank tends to follow a more aggressive
policy. The closer to the zero lower bound, the lower the interest rate
is relatively to the unconstrained benchmark. Interestingly, on the
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Figure 5: Sample simulation
The bottom panel shows a zoom of the simulated interest rate, the blue line is the optimal
policy from the unconstrained economy and it coincides with the shock as discussed in
section 4.1.1. The shocks are identical in simulations with and without the zero lower
bound. The two prolonged periods of binding ZLB are very rare events (see table 2).
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other side of the spectrum we observe a similar pattern even though
we might perhaps expect a convergence to the unconstrained policy
since the ZLB does not constrain the policy maker when setting high
interest rates. Nevertheless, we observe that when interest rates are
above the steady-state value, they tend to be higher in the constrained
economy compared to the unconstrained one, although the difference
seems to be rather small.

Figure 6: Ergodic distribution of interest rates
Left panel shows the ergodic set of interest rates sorted from lowest to highest. Right
panel shows the estimated density functions.

We think that there are two reasons for this. First, when approach-
ing the ZLB the central bank aims to overstimulate the economy to
create inflation expectations. These increased expectations then al-
leviate the liquidity trap should the central bank hit the ZLB soon.
This way the central bank trades off smaller welfare losses of future
liquidity traps for larger losses of imperfect stabilization today. Due
to the convexity of the central bank’s loss function, however, such a
trade-off is welfare improving. Since the closer to the ZLB, the higher
the risk of the bound becoming binding, the urge to trade off the fu-
ture welfare losses for the current ones becomes stronger and, hence,
the deviation of optimal policy from the unconstrained benchmark
is larger. A similar argument may apply when setting the interest
rate above its steady-state value. This would typically be associated
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with a positive shock, thus encouraging counter-cyclical expectations
in this situation requires more restrictive policy.

Second, upon occurence of a liquidity trap the expectations co-
efficients may become positive, as the agents learn to expect negative
inflation and output gaps in times of depressed demand, and become
larger with the duration of the liquidity trap episode. To contain
this undesirable rise in expectations the central bank has to engage
in more aggressive policy. Overall, the over-aggressive policy then
creates the somewhat unintuitive counter-cyclical expectations. In
the next section we turn to the impulse response functions to explore
these mechanisms further.

Table 2: Long simulation statistics

mean median std
non-ZLB ZLB ZLB non-ZLB ZLB

a1 0.00 -0.006080 -0.010149 0.00 0.016600
a2 0.00 0.004590 -0.006720 0.00 0.115000
r 0.000085 0.000085 0.000075 0.000043 0.000043
ε -0.000128 -0.000128 -0.000183 0.009210 0.009210
i -0.000128 -0.000182 -0.000193 0.009210 0.009300
π 0.00 -0.000011 -0.000004 0.00 0.000231
x 0.00 -0.000060 0.000078 0.00 0.002350
πe 0.00 -0.000008 -0.000002 0.00 0.000170
xe 0.00 -0.000105 0.000012 0.00 0.001280
iZLB -0.01495
ZLB % 5.29 5.88
ZLB 1q % 60.9
ZLB < 5q % 91.9
ZLB < 9q % 97.6
ZLB > 15q % 0.46

Note: Simulation 500000 periods. Values rounded to six decimal places. πe and
xe are the expected inflation and output gaps as in eq (5). ZLB % shows the
percentage of periods in which the ZLB is binding and the last four rows show
the percentage of liquidity trap periods of certain duration (in quarters).
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4.2 Optimal response to shocks
We now turn our attention to the main purpose of the paper, the
question of how the central bank responds to shocks that (threaten to)
take it to the zero lower bound. In a model with rational expectations,
Eggertsson and Woodford (2003) find that after reaching the zero
lower bound it is optimal for the central bank to keep the interest
rate at the bound even after the natural interest rate ceases to be
negative. This is then accompanied by a corresponding overshoot
of the inflation target. They also find that the central bank should
respond disproportionately more to negative shocks of a larger size
and, as a corollary, it should lower the interest rate to the ZLB before
the natural interest rate becomes negative. In this section, we examine
these predictions by analysing impulse responses to such shocks. If
these predictions carried over to our model then we would observe the
constrained central bank pursuing a more expansionary policy, unless
obstructed by the ZLB, and thus its impulse response lying below the
one of the unconstrained central bank.

Since in non-linear models an impulse response depends on both
the future realizations of the shocks and the initial condition, as dis-
cussed in section 3.1, we calculate a large number of responses, each
for a different initial condition, and report various percentiles from
the resulting distribution. The initial condition for each response is
taken from the ergodic set of the constrained economy. Where we
compare responses for constrained and unconstrained central banks
the two sets of impulse responses use the same initial conditions and
the same realizations of the stochastic process. We can think about
this intuitively as comparing responses of two central banks which
have both been subject to the zero lower bound constraint but at the
beginning of period zero one of them unexpectedly discovered a way to
set negative interest rates. We refer to such a central bank as uncon-
strained even though it has been previously constrained by the ZLB.
Occasionally we also make a comparison to a central bank that has
never been exposed to the zero lower bound constraint and, therefore,
the agents expect it to stabilize the economy perfectly at all times.
We refer to such a central bank as being in a long-run equilibrium (as
defined in footnote 18).
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Figure 7: A current period response to shocks of varying sizes.
The initial condition is the median state from the ergodic set of the constrained economy.
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4.2.1 Response to shocks in normal times

We start with a single, representative initial condition, which repre-
sents a situation when the central bank is far from the effective lower
bound and it has not been obstructed by the bound for a long time.
We call this normal times. A current period response as a function of
the shock, when the other variables are set to the median values they
attain in the constrained economy, is presented in Figure 7.23 The
most notable feature of the chart is that, due to the presence of the
zero lower bound, optimal policy is strongly distorted towards lower
interest rates in response to shocks that threaten to take the econ-
omy to the effective lower bound. Also these distortions are larger for
larger shocks. As a corollary, the central bank reaches the zero lower
bound sooner than its unconstrained counterpart.

The closer the shock brings the central bank to the lower bound
the larger the risk that the bound will be reached in the near fu-
ture, which would be accompanied by substantial welfare losses. The
central bank attempts to mitigate these losses in anticipation of the
liquidity trap occuring by overstimulating the economy in the vicin-
ity of the lower bound in order to create (or reinforce) inflationary
expectations. As Krugman (1998) points out, and what has become
a stylized argument, the real interest rate can be reduced by creating
expectations of future inflation, even when the nominal interest rate
cannot be lowered any further. This has become the crux of the, now
popular, advice of Eggertsson and Woodford (2003) to create infla-
tion expectations by committing to overly expansionary policy once
the liquidity trap has ended. In an economy with learning, however,
influencing inflation expectations once the liquidity trap has occurred
is not possible and, thus, this advice fails.

The central bank, therefore, has to create such expectations in ad-
vance of the liquidity trap by reacting to negative shocks with exces-
sive monetary stimulus, which an unconstrained central bank would
not find desirable.24 This overly loose monetary policy creates welfare
losses in the current period, which are traded off for lower losses in
times of a liquidity trap, should one occur.

23. Using a single initial condition allows us to make a direct comparison to the zero
lower bound. Using the 25-th or 75-th percentiles, as opposed to the median, does not
change the conclusions.

24. Note that normal times are characterized by counter-cyclical expectations and thus
negative expectations coefficients, a1 and a2.
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Figure 8: Comparing optimal and naive policy.
Red lines indicate the optimal constrained policy, blue a naive policy, and green the long-
run (one-to-one) policy. The naive policy is the unconstrained policy truncated to the
lower bound. The initial condition is the median from the ergodic set of the constrained
economy.

To investigate this channel further we run the following experi-
ment. The economy is hit by a medium negative shock, 1.5σε in size,
which does not cause a liquidity trap but is large enough to make a
constrained central bank lower the interest rate to the effective lower
bound. This shock is kept constant for four periods and then it is
replaced by a larger negative shock, 2.5σε in size, which then decays
according to the AR(1) specification as usual. This latter shock does
cause a liquidity trap. Figure 8 shows the associated dynamics and
compares the optimal policy to a naive policy which is identical to the
unconstrained optimal policy whenever it is above the effective lower
bound. When it reaches the bound, though, it becomes stuck.

The impulse responses show that, by being more aggressive in
stimulating the economy in a run-up to the lower bound, the opti-
mally behaving central bank achieves lower losses during the liquidity
trap period. The crucial difference between these two policies is mani-
fested in the behaviour of expectations. Since the naive central bank,
being unaware of the impossibility of negative nominal rates, aims
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to enforce the convergence of expectations to the long-run equilib-
rium, it attempts to lower expectations regardless of the vicinity of
the effective lower bound. This is, however, a bad policy, resulting in
larger welfare losses in the case of the interest rate getting stuck at
the bound.

In contrast, the optimally behaving central bank stimulates expec-
tations in anticipation of the effective lower bound becoming binding
in the near future. This can be seen both on the expected gaps and
the forecasting functions plots. Both banks then hit the lower bound,
in this experiment, which forces expectations to decline for the dura-
tion of the trap. Since the optimally behaving central bank was better
prepared for the episode and because it is more expansionary during
the recovery, expectations are faster to converge to pre-shock levels.

It is also instructive to see how the naive central bank which is
more restrictive than a central bank in a long-run equilibrium before
the liquidity trap occurs becomes more expansionary after the trap
disappears.25 This is solely due to the distortion of expectations the
unexpected presence of the zero lower bound created.

Potentially, such a naive policy could, in conjuction with the ef-
fective lower bound, allow a deflationary trap to develop. In Evans,
Guse, and Honkapohja (2008) it is emphasized that monetary policy,
if not aggressive enough, can, indeed, take the economy to a defla-
tionary trap, if one exists. The authors demonstrate, by the means
of an example, that such a deflationary trap may be avoided if mon-
etary policy is sufficiently aggressive (although this may not suffice
in all cases). They design a simple threshold rule, which they call an
aggressive monetary policy rule (AMPR) by which the central bank,
otherwise using a standard Taylor rule, lowers the interest rate dis-
countinuously to the effective lower bound whenever inflation drops
below a certain level. Whether such a deflationary trap exists in our
model is an important question. Nevertheless, answering this question
fully goes beyond the scope of this paper.26

We would, however, like to emphasize the similarity of our op-
timal policy to the AMPR. Both policies incorporate the idea that

25. Note that, outside the ZLB, the naive policy is identical to the optimal unconstrained
policy but the episode of binding zero lower bound changes the state of expectations
making the policy more expansionary (compare to Figure 9).

26. All we can say here is that we did not observe a deflationary trap developing anywhere
in our simulations. See footnote 34 for the description of some of the experiments that
were specifically targetted at discovering a deflationary trap.
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Figure 9: Impulse responses to a large shock (−2.5σε)
Red lines are for the ZLB policy, blue without the ZLB, and green the long-run equilibrium.
The initial condition is the median from the ergodic set of the constrained economy.

inflation expectations have to be stimulated by aggressively lowering
the interest rate before a shock takes the economy to the effective
lower bound where deflationary pressures start to develop. The opti-
mal policy does it in a smoother manner, in order to spread the cost
of this pre-emptive monetary easing over a longer time horizon, and
without the need for discontinuous jumps in the policy instrument
(clearly, such jumps are not optimal). We would argue that the re-
quirement to prevent a deflationary trap is embedded in the notion of
optimality.

We make one more observation about Figure 7. The precaution-
ary behaviour in the vicinity of the zero lower bound is reminiscent of
the behaviour of optimal policy in models with rational expectations.
We notice one difference, though. In the bottom two panels we, yet
again, notice the inflation-output trade-off of the unconstrained cen-
tral bank, which has been discussed earlier, but, perhaps somewhat
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unexpectedly, we do not see the same trade-off arising in the case of
a constrained central bank that has not yet reached the zero lower
bound. In our model optimal policy is so aggressive that the central
bank accepts both gaps increasing above their pre-shock values. We
do not see this in models with rational expectations.27

When the shock is large enough to cause a liquidity trap, see Figure
9, the unconstrained central bank sets a negative nominal interest
rate but it is not able to offset the shock fully, which is due to the
existence of the policy trade-off. The failure to offset the shock then
causes a necessary adjustment in agents’ forecasting functions. The
policy is also little more restrictive than the long-run one because
agents have counter-cyclical expectations initially. The constrained
central bank, on the other hand, becomes stuck at the effective lower
bound and witnesses a sharp reduction in both inflation and output,
which, in turn, results in substantial deterioration of expectations,
further reinforcing the need for monetary stimulus. Such a stimulus
can only come once the liquidity trap has disappeared and we can see
that, then, the constrained policy becomes more expansionary than
the unconstrained one.

This pattern is consistent with the prediction of Eggertsson and
Woodford (2003), and we shall investigate it in more detail, however, it
is crucially reliant on the impulse responses having been constructed
from the conditional median profiles as opposed to the conditional
mean ones (see footnote 12 and appendix A.4). Since the dynamics
depends on the realizations of the future shocks the way one treats
these shocks may affect the resulting shape of the impulse response.
Figure 19 in appendix B shows the alternative impulse responses when
conditional mean profiles are used. We would argue that using the
mean profiles does not adequately capture the non-linearities of the
zero lower bound. It can even change the interpretation of the results
dramatically, in fact, the constrained central bank would appear to
be more restrictive than its unconstrained counterpart while we are
going to argue the opposite is the case.

4.2.2 Generalized impulse response

So far we have only considered a single initial condition, albeit one
that occurs relatively frequently in simulations. To investigate to what
extent our conclusions to this point are the reflections of the general

27. See Eggertsson and Woodford (2003) and Adam and Billi (2007).
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Figure 10: The distribution of impulse responses to a large shock (−2.5σε)
The figure displays every fifth percentile from 5th to 95th, the initial condition for all
responses is the ergodic set of the constrained economy (except LR, for which expectations
are zero). The horizontal axis shows time.
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Figure 11: Impulse responses to a large shock (−2.5σε)
red lines are for the ZLB policy and blue without the ZLB, the initial condition for all
responses is the ergodic set of the constrained economy; for the unconstrained economy
only the median response is shown (see figure 3 for comparison).
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behaviour of the model, we will now explore the whole distribution
of the impulse responses across all initial conditions. We consider a
negative shock of size 2.5 standard deviations of the AR(1) shock,
which is large enough to bring the economy to the zero lower bound
for most initial conditions. A view of the full distribution of impulse
responses to this shock is shown in Figure 10 but we will focus our
attention on a selected set of responses from this distribution as shown
in Figure 11.

Each impulse response represents a deviation of the respective vari-
able from a counter-factual scenario that would prevail if there had
been no shock in period zero and it is indexed by the probability that
this or lower deviation is observed. Since these are not deviations from
a steady state, or from any given initial condition for that matter, it
is not possible to represent the ZLB constraint on the same graph.28

In the context of a non-linear impulse response, the constraint needs
to be interpreted as a maximum allowable reduction of the interest
rate in a given state of the economy. The state of the economy, how-
ever, is not shown on the graph, in fact, it is not possible to associate
any of the impulse responses with a specific state since multiple ini-
tial states of the world may have resulted in a response of the same
size. The best we can do is to calculate the probability that a given
impulse response is associated with the central bank hitting the ZLB
(such probabilities are shown in Figure 12). We can, therefore, only
make an indirect inference about the role of the lower bound in these
responses.

So what do the impulse responses tell us? The unconstrained
impulse responses show very little dispersion and thus the previous
conclusions seem to have general validity. We still see the policy
trade-off and, due to this trade-off, we see the forecasting functions
going through a period of mild adjustment. On the other hand, the
dynamics expressed by the constrained impulse responses can vary
a lot. In some states of the world the central bank is close to the
effective lower bound before the shock arrives and in some states it is
so far from it that it barely hits the bound, or not at all. The initial
distance to the lower bound determines the duration and the severity
of the resulting liquidity trap. The longer and more severe the trap
is the larger the losses are and the more expectations are disturbed.
And, as we have seen earlier, expectations have an important influence

28. In the previous section we could do that because we controlled the initial condition.
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on the resulting dynamics.
The solid curve represents the median response and it shows a

typical picture in a liquidity trap episode. The interest rate declines
as much as it can and the inflation and output gaps as well as the ex-
pectations all deteriorate as we saw earlier. For comparison, we also
show the mean dynamics, represented by the dotted curve. As we
would expect, the top panel suggests that the mean does not capture
the non-linearities caused by the zero lower bound very well, there-
fore, we do not pay much attention to the mean in the subsequent
discussion.29

The two dashed curves in each panel represent the lower and up-
per quartile responses. Unfortunately, it is not obvious which of the
two curves in any given panel is associated with which of the dashed
curves in the other panels. Our argument about which curves in the
different panels are associated with each other comes from our indirect
inference about the zero lower bound. The bottom dashed curves in
panels two and three and the top dashed curves in panels four and five
clearly show symptoms of an economy in a liquidity trap – substantial
decline in output and inflation and large deterioration of expectations
– and, hence, it must be associated with the top dashed curve from
panel one.

It may not be easy to see that the top dashed curve in panel one
actually shows that the central bank reached the zero lower bound.
In fact, it does not look like the interest rate hit the lower bound at
all, instead, it makes the impression that the central bank is rather
cautious lowering the interest rate initially and that monetary policy
is only loosened slowly over time. This, however, would not be the
right way of interpreting the response. It is more plausible that the
central bank started in an unfavourable initial condition and that it
was initially much closer to the ZLB so that it hit it quickly. Since
such poor initial conditions are relatively uncommon (the probability
that the CB would start farther away from the ZLB is 75%) the coun-
terfactual is likely to involve increasing interest rates, which makes
the response appear more restrictive initially and more relaxed later
while, in fact, the interest rate is at the ZLB all the time.30

29. This is related to the issue of averaging over future shocks discussed earlier.
30. As explained previously, the counterfactual depends on the realizations of future

shocks. To eliminate this dependence we aggregate over the future shocks by calculating
the median profile and the impulse response is then calculated as the difference between
two such profiles, with and without the initial impulse. Therefore, by construction, even
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To shed some light on this behaviour, Figure 13 presents the
after-shock interest rates, from the impulse response simulations.31

It reveals that, indeed, 85% of the simulated interest rates reach the
zero lower bound after the shock. Therefore, we infer that responses
smaller in absolute value are associated with reaching the zero lower
bound, larger drops in output and inflation, and larger deterioration
of expectations (i.e. larger increases in the expectations coefficients).

Coming back to Figure 11, the bottom dashed line in the top panel,
then, shows the response of a central bank that was lucky enough to
experience the shock when it was far away from the ZLB so that it
had enough room to lower the interest rate and it only barely hit the
lower bound. This curve is associated with the top dashed curve in
the second and third panels and with the bottom dashed curve in
the last two panels. It would be tempting to say that this is because
the central bank is, in this case, virtually unconstrained and thus the
responses are expected to be similar to the unconstrained ones – we
even observe the same trade-off between inflation and output after all.

However, such an interpretation would be misleading, the central
bank is still potentially constrained and it has to take into account
the risk of the lower bound becoming binding in the future. Similar
logic applies here as it did in section 4.2.1. Since there are strong
non-linearities close to the zero lower bound, which make the central
bank more expansionary in an attempt to avoid hitting the bound in
the future, the constrained and unconstrained policies may still differ
substantially even when the former is not immediately constrained.
In fact, the emergence of the said trade-off in panel two and three
is a sign that the central bank actually did hit the lower bound as
otherwise it would have been encouraged to stimulate both output
and inflation at the same time to alleviate the cost of a liquidity trap
potentially occuring in the future.

To summarize, in response to a large shock the central bank low-
ers the interest rate to the zero lower bound, in most cases, which
lowers the inflation and output gaps and, consequently, the expecta-
tions coefficients start to increase as the agents learn that the central
bank is not able to carry out sufficiently large monetary expansion
to offset the shock. Where the interest rate does not hit the bound,

if the interest rate was at the lower bound at the time of the shock, the impulse response
would appear to be decreasing over time while the interest rate would be at the ZLB for
many periods (this is the case of the top curve in Figure 10).

31. The figure was constructed from a sample of 50 million interest rates in each period.
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or where it reaches it pre-emptively, we may or may not observe the
same trade-off between inflation and output as we observe in the case
of an unconstrained central bank.

4.2.3 The Lower for Longer Property

The discussion in the previous sections suggests that, perhaps, the first
prediction of Eggertsson and Woodford (2003), the lower for longer
property of optimal policy after a period of liquidity trap, holds in our
model too. Probably the most convincing so far is the comparison of
the distributions of constrained and unconstrained impulse responses
in Figure 10, where we also show the impulse response of a central
bank in a long-run equilibrium. The comparison to the long-run pol-
icy provides a convenient separation between the unconstrained and
constrained policies. While the former is more restrictive most of the
time, the latter is more expansionary except in the cases where its
policy has clearly become obstructed by the zero lower bound.

Due to the impossibility to obtain a direct comparison to the effec-
tive lower bound, though, such a conclusion might be little premature.
To gather more evidence, we, therefore, calculate the probability that
the interest rate reaches the zero lower bound for each impulse re-
sponse. We construct a number of bins, each 5 percentiles wide and
centered at every 5th percentile (we disregard the bottom and top 2.5
percent). Then, for all impulse responses which fall in a given bin we
calculate the proportion of interest rates which hit the lower bound
in the underlying simulations.32

These probabilities are reported in Figure 13 and they confirm
that the constrained central bank stays at the lower bound more of-
ten than its unconstrained counterpart. There is a small number of
cases where this is not the case but those are driven by the fact that
due to computer arithmetic and numerical/approximation errors the
interest rate will never be exactly equal to the lower bound. When we
consider all interest rates which agree with the ZLB constraint on four
decimal places as having hit the lower bound then the probabilities
for the constrained central bank are, in all cases, larger than for the
unconstrained one.

32. Given we use 50 thousand initial conditions and 2 thousand simulations per initial
condition, the total number of simulations for all experiments involving the whole distri-
bution of impulse responses is 50 million. This gives a sample of 2.5 million interest rates
in each bin (per period).
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Figure 12: Distribution of the probability of staying on or below the ZLB
(defined as i− ZLBvalue < ZLBtol) n periods after impulse.
Bins correspond to the distribution of impulse responses for the interest rate as in Figure
10. Bottom panel shows the difference between the top two panels, a positive number
means that the constrained central bank has higher probability of hitting the ZLB than
the unconstrained one. In all panels ZLBtol = 10−5 (for ZLBtol = 10−4 there would be
no negative values in panel 3).
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Figure 13: Distribution of interest rates after a large shock (−2.5σε).
The figure displays every fifth percentile from 5th to 95th for the raw interest rates (not
the impulse responses), the initial condition is the ergodic set of the constrained economy.
The horizontal axis shows time.

We also compare the plain after-shock interest rates (as opposed
to the impulse responses) of both central banks as in Figure 13. This
comparison shows that after a large shock hits the economy the con-
strained central bank lowers the interest rate faster, keeps the interest
rate at the bound for longer, and returns the interest rate to the pre-
shock levels slower than its unconstrained counterpart.

Finally, we calculate the probability that the constrained interest
rate is below the unconstrained interest rate whenever the latter is
above the lower bound. This probability is displayed in Figure 14 and
it shows that for the first approximately 25 periods after the shock
this is always the case as long as the shock is still negative. All this
gives solid evidence of the lower for longer property of optimal policy
in our setting.

When the shock turns positive, however, it is the exact opposite.
The reason for this property depending on the sign of the shock is
that the ZLB destabilizes agents’ expectations through the central
bank’s failure to control the gaps once the interest rate is lowered to
its effective lower bound. Since, at that moment, the CB loses the
ability to stimulate the economy, the inflation and output gaps start
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Figure 14: Probability of lower for longer
Horizontal axis shows time.

to decrease and so do agents’ expectations. The, initially inflationary,
expectations can even turn into deflationary ones if the liquidity trap
episode lasts for long enough. While counter-cyclical expectations,
which prevailed before the shock, are of a stabilizing nature, the pro-
cyclical expectations, resulting from a period of liquidity trap, become
a source of volatility when the shock changes its sign.

The mechanics of this are just the opposite from what we have dis-
cussed previously. Under pro-cyclical expectations, when the shock
becomes expansionary, agents become expecting above average infla-
tion and economic activity, and, hence, responding one-to-one to the
shock would make the central bank overshoot its targets. The zero
lower bound can thus have significant distortionary effects even when
policy is not constrained by it. It can take several dozen quarters
for the central bank to contain these expectations, and for the con-
strained and unconstrained policies to converge, as can be seen for
instance from the sample simulation shown in Figure 5. In that chart
we can also see how the central bank becomes very restrictive in re-
sponse to positive shocks that occur after prolonged periods spent at
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the zero lower bound.
What we, however, also notice is that the optimal policy, although

exhibiting the lower for longer property, produces only a small amount
of inflation overshooting (as in Figure 11). We especially note the
fact that the amount of overshooting decreases with the duration of
the liquidity trap, which is in stark contrast to models with rational
expectations under commitment. Most of the overshooting comes
from the pre-emptive monetary expansion where the central bank tries
to avoid hitting the zero lower bound.

The most likely explanation is that the episode of liquidity trap
creates deflationary expectations which, moreover, get worse as the
liquidity trap progresses. Therefore, even though monetary policy is
more relaxed, and stimulates inflation and output, most of the extra
monetary stimulus is absorbed by the increasing deflationary expecta-
tions. This is in contrast to rational expectations models where, under
the optimal policy, the liquidity trap episode creates expectations of
above average inflation in the future.

To investigate this channel in more detail we run the following
experiment. We choose the median state from the ergodic set of the
constrained economy as the initial condition, simulate the economy
for several hundred periods with the shock innovations set to zero,
and then we introduce a shock of −2.5σε, which we keep constant for
a given number of periods.33 After the last period the shock becomes
−0.5σε, we set the shock innovations to zero again, and simulate the
economy for a several dozen more periods. The purpose of this experi-
ment is to compare the response to a small shock that would normally
not take the economy to the zero lower bound when the economy has
spent a different number of periods in the liquidity trap. The only
difference between the responses for different durations is the effect of
the ZLB on expectations.

The results are shown in Figure 15 and they highlight the im-
portance of expectations on central bank’s precautionary behaviour.
Although the shock is too small to take the economy to the zero lower
bound under normal circumstances, the graph shows that the central
bank may react very strongly even to small shocks if its objectives
have been disturbed by the zero lower bound previously. Interest-
ingly, having spent even just a single period at the zero lower bound

33. In principle, we could do this for the whole ergodic set and calculate the median
response. Focusing on a single initial condition gives us better control over the expectations
channel.
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Figure 15: Response to a small shock after a liquidity trap of various dura-
tions.
Small shock of −0.5σε takes place in period 1. The economy has been subject to a shock
of −2.5σε for n periods starting in period 1− n (not shown). Horizontal axis shows time.
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produces a substantial distortion of optimal policy. The size of the
response doubled purely through the effect a single period at the ZLB
had on expectations. This experiment gives another confirmation of
the lower-for-longer property of optimal policy, the central bank that
has spent a longer period of time at the zero lower bound sets lower
interest rates and even keeps the interest rate at the bound for longer
still.34

In models with rational expectations, the lower-for-longer prop-
erty is the result of binding announcements of future overshooting of
the inflation target, dubbed forward guidance. Such overshooting is
then delivered by an excessive monetary loosening when the period of
liquidity trap is over. Such announcements have no effect with learn-
ing since agents adjust their expectations based on experience rather
than on promises. Therefore, it is interesting to observe that even
in a model with learning the optimal policy mimics the one from a
rational expectations world with commitment.

Nevertheless, the mechanism is very different and it works through
two distinct channels. On the one hand, lower interest rates on exit
from the liquidity trap are driven by the proximity of the zero lower
bound whereby the central bank puts a large weight on the risk of hit-
ting the bound again and, hence, engages in precautionary monetary
expansion. On the other hand, having spent several periods at the
effective lower bound disturbs agents’ expectations, which may even
turn from counter-cyclical to pro-cyclical. When the liquidity trap
period is over, the low expectations drag both inflation and economic
activity downwards and the central bank responds to that by addi-
tional monetary loosening. This effect is not present in models where
monetary policy is based on the forward guidance principle. We can,
colloquially, summarize the difference by saying that the lower for
longer in our model is not driven by delivering on a promise of high
inflation but rather by dealing with the disappointment from not de-
livering on agents’ past expectations. In this sense optimal policy with
learning shares the history-dependence feature of forward guidance,
although the nature of this history dependence differs.

34. We have run experiments with even longer periods of liquidity traps, up to 200,
and starting with extreme values of expectations (close to upper grid boundaries, those
values are outside the ergodic set) to see whether this would lead to a deflationary trap
developing. It would not.
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4.3 Accuracy
Since our calculations are inevitably affected by numerical and ap-
proximation errors we need to test the accuracy of our solution. The
usual practice is to test the solution by calculating the Euler equation
errors as is done e.g. in Fernández-Villaverde et al. (2015). We were
not able to derive the Euler equation in terms of economic primitives,
however, the solution of the central bank’s problem must satisfy the
Bellman equation, too.35 Hence, we use the BE errors instead.

Denoting the left-hand and right-hand sides of equation (20) as
L̂HS and R̂HS, respectively, the absolute BE errors are calculated
as abs(L̂HS− R̂HS) and the relative errors are calculated as abs(1−
R̂HS

L̂HS
).

We present both absolute and relative errors in log10 units, which
shall be interpreted as the digit after the decimal point on which the
first non-zero value occurs. The relative errors are in some cases unre-
alistically high due to dividing by a number close to zero. This occurs
for the unconstrained central bank since in the long-run it stabilizes
the economy so well that it achieves near zero welfare losses. Overall,
we judge the errors acceptable. Although not directly comparable,
the relative errors are of similar magnitude to Fernández-Villaverde
et al. (2015).

5 Robustness
In this section we discuss the effects of alternative parameterizations.
There are three potential sources of sensitivity of our results: the
process of expectations formation as captured by the learning rate,
γ, the preferences of the policy maker as captured by the welfare
weight, λ, and the degree to which the effective lower bound inhibits
stabilization. The latter is captured by the frequency with which the
natural interest rate becomes negative and it is affected mainly by the
parameters β, π∗, σ, ρ, and σε.36

The individual rate of time preference, β, and the inflation tar-
get, π∗, affect the value of the zero lower bound directly. Since a

35. In our model the envelope theorem does not eliminate the unknown derivatives of
the value function.

36. The natural interest rate is the same as the long-run one-to-one policy, Figure 26 in
the appendix shows the proportions of periods in which it is below the zero lower bound.
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Table 3: Bellman equation errors

non-ZLB ZLB
max min mean median max min mean median

random grid -5.05 -18.67 -6.84 -7.72 -3.92 -12.32 -5.88 -7.08
(-1.86) (-10.17) (-3.40) (-3.61) (0.64) (-8.56) (-2.57) (-3.42)

long simulation -22.10 -28.44 -23.44 -23.61 -5.07 -14.71 -8.49 -10.18
(-0.98) (-7.33) (-2.34) (-2.50) (-1.72) (-9.57) (-3.96) (-5.03)

ergodic set -21.90 -29.13 -23.45 -23.61 -4.92 -15.64 -8.57 -10.18
(-0.79) (-8.04) (-2.34) (-2.50) (-1.68) (-10.44) (-3.97) (-5.03)

BE grid -9.53 -27.33 -11.13 -12.70 -10.51 -10.51 -10.51 -10.51
(-1.15) (-8.12) (-3.44) (-7.49) (-4.38) (-8.37) (-5.73) (-6.18)

Note: The table shows the absolute Bellman equation errors in log10 units (relative errors in parentheses).
BE grid means the grid on which the Bellman equation was solved, by design these errors should be small.
For the random grid 100K random points were used. The relative errors for the unconstrained economy are
in many cases affected by the division-by-zero problem.

lower π∗ and a higher β reduce the steady state interest rate they
effectively bring the lower bound closer. The interest elasticity of ag-
gregate demand, σ, does not affect the value of the effective lower
bound directly but it has a similar effect as just described. A lower
value of σ reduces the effectiveness of monetary policy in influencing
aggregate demand and, in response to a negative shock of given size,
forces the central bank to lower the interest rate by more. This gives
the central bank less room to maneuver before the ZLB is reached,
effectively bringing the lower bound closer. The last most important
factor is the volatility of the demand shock process. Both a higher
variance of the innovations, σε, and a higher persistence of the AR(1)
component, ρ, make the process more volatile, which results in the
natural rate becoming negative more often. The central bank then
lowers its instrument to the effective lower bound more often too. All
these factors then have a similar effect in that they result in the cen-
tral bank reaching the zero lower bound more frequently. To simplify
the exposition we will, therefore, only illustrate this effect with the
shock persistence parameter, ρ.

We have solved the model with different values of γ, λ, and ρ,
changing only one at a turn, and we observed our main result un-
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Figure 16: Impact response
The initial condition is the median of the constrained economy.

changed in all experiments. This is illustrated by the generalized
impulse response charts in the appendix (see Figures 27 – 29), which
show the lack of inflation overshooting discussed earlier. Nevertheless,
some interesting patterns emerge.

Generally, increasing volatility, either endogenously by faster ex-
pectations updating by the agents or exogeneously through the nature
of the stochastic process (or, more generally, in a way orthogonal to
expectations formation), the central bank tends to respond stronger
to negative shocks. This can be seen in the top and bottom rows of
Figure 16. By responding stronger the central bank encourages higher
expectations, i.e. lower expectations coefficients, which stimulates in-
flation expectations. These then serve as a cushion against the ZLB
becoming binding in the near future. Interestingly, higher volatility
causes the unconstrained central bank to be more restrictive relatively
to the long-run one-to-one policy.
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Figure 17: Long run values as functions of parameters
The curves show the median value of the given variable in a long run simulation when γ,
λ, and ρ are changing.
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Figure 18: Taylor curves
λ ranges from its benchmark value (0.007) to 0.4 for γ = 0.01, to 0.5 for γ < 0.03, to 1.0

for γ > 0.03 and 10.0 for γ = 0.03.

5.1 Taylor curve
Taylor (1979) presented the idea that, under rational expectations,
there is a trade-off between inflation volatility and output volatility
and this trade-off is driven by the central bank’s preference for in-
flation vs. output stabilization (parameter λ in the model). In our
model with learning we also observe this trade-off. The combinations
of lowest achievable volatility of inflation and output represent an effi-
ciency frontier and they are depicted by, so called, Taylor curve, which
we show in Figure 18 for different values of the learning gain param-
eter, γ.37 We can see that lower values of the learning gain cause the
Taylor curve to shift inwards and pivot. The inward shift means that
the central bank is more successful in stabilizing the economy when
agents update their expectations more slowly, hence, without sudden
shifts.

For very low values of γ, however, the Taylor curve becomes posi-

37. For high values of λ and/or low values of γ the computations of the Taylor curve
become rather costly, therefore, we economized on the number of points representing the
Taylor curves. For the benchmark (purple) we calculated the Taylor curve for λ up to 10,
which is a reciprocal value to 0.1 weight on output.
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tively sloped, meaning that higher welfare weight attached to output
stabilization causes more volatility of both output and inflation and,
thus, such an excessive output stabilization is inefficient. By putting
less weight on output stabilization the policy maker could achieve
lower volatility of both the inflation and the output gaps. Overall,
we conclude that the central bank’s policy is more efficient in sta-
bilizing economic fluctuations when agents change their expectations
more smoothly.

This is because episodes of binding zero lower bound are the result
of random shocks, which are not under the central bank’s control.
When the central bank fails to stabilize the economy during these
random episodes, the agents learn to expect such failures to occur in
the future again. However, with lower learning gain parameter the
expectations are affected to a lesser extent. Once the period of the
binding zero lower bound is over the central bank restores the control
over agents’ expectations and, with a suitable, now unconstrained,
policy, it can prevent the episode to have a prolonged effect on the
economy. Our results thus suggest that the welfare costs of the zero
lower bound are magnified by more volatile expectations formation.
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6 Conclusion
This paper set out to study the design of optimal monetary policy
when central banks are constrained by the zero lower bound (ZLB)
and agents form expectations using constant gain, least-squares learn-
ing. Compared to models with rational expectations in which the
central bank can commit to a future policy path, in our setting the
central bank has no direct influence on agents’ future expectations and
the indirect influence, which it has through its current period policy
instrument, is lost when that instrument reaches the effective lower
bound. In this setting, therefore, the policy advice of Eggertsson and
Woodford (2003), often referred to as ’forward guidance’, which is to
announce such a policy path that makes the policy maker overshoot
their inflation target at some point in the future when the ZLB no
longer binds, is ineffective for it cannot alter agents’ expectations.

This ineffectiveness of forward guidance then carries over to our
results not showing the inflation overshooting, which is the key factor
shaping optimal policy under rational expectations. In our model,
the amount of inflation that the central bank optimally allows is even
decreasing with the duration of the liquidity trap episode. This is in
stark contrast to EW and it is our main point. Nevertheless, optimal
monetary policy with learning still shows some similarities to optimal
policy derived under rational expectations with commitment: in re-
sponse to smaller shocks that threaten to take it to the effective lower
bound the central bank responds disproportionately more to shocks
of larger size, and hence it reaches the ZLB sooner; in response to
larger shocks, which cause a liquidity trap, it keeps the interest rate
at the bound for longer, and it allows the interest rate to stay away
from the pre-shock levels for longer too.

When responding to smaller shocks, there is a clear precautionary
motive in pursuing this type of monetary expansion before the ZLB is
reached. In fact, the central theme of optimal policy under the ZLB,
and this is a distinctive feature of our model, is that by reacting more
aggressively to both negative and positive shocks the central bank
manipulates the agents’ expectations in such a way that they become
counter-cyclical – in times of a recession agents expect expansion and
positive inflation. This then lowers the cost of the recession should
the ZLB become binding. In this sense, a rational policy maker can
mitigate the cost of the effective lower bound even in the absence of
a direct lever over agents’ expectations.
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The response to large shocks, then, is driven partly by the same
precautionary motive in face of the risk of the liquidity trap re-occuring
and partly by deflationary pressure, which develops during the period
of binding ZLB and which calls for additional monetary stimulus.
At the same time, and in contrast to EW, this stimulus is not large
enough to result in much inflation overshooting, following a period of
binding ZLB. The optimal policy even becomes more restrictive the
longer the duration of the liquidity trap. This is due to the episode
of binding ZLB destabilizing the belief coefficients, which the policy
maker does not want to allow to carry over to future periods. In prin-
ciple, there is also the potential for a deflationary trap to develop but
we do not observe it in our simulations. We leave a detailed inves-
tigation of the existence of deflationary traps in our setup for future
research.

In addition to the above, we obtain two new results when the
ZLB is not allowed to bind. First, notwithstanding the presence of
constant gain learning, the economy converges to the rational expecta-
tions equilibrium (REE). Second, when not in the REE, the demand
shock causes an inflation-output trade-off, which does not occur in
models with rational expectations. These findings are new in the lit-
erature, as far as we are aware.
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Appendices
A Details of the numerical procedure
This appendix sketches the algorithm we used to solve the central
bank’s optimization problem and discusses some issues in more detail.

Let Z ⊂ R4 be the state space and z = (a1, a2, r, ε), z ∈ Z be a
vector of state variables. We choose a bounded subset of the state
space, Z ⊆ Z, and define a fixed grid of points on it giving the finite
set Z = {zi : zi ∈ Z, i = 1, . . . , nz}. Denoting the values of the
value function on this grid as an n-tuple V Z = {(v1, v2, . . . , vnz) : vi =
V (zi), zi ∈ Z, i = 1, . . . , nz}, we guess the values vi and construct an
approximation V̂ (z), z ∈ Z such that V̂ (Z) = V Z.38 To solve the
central bank’s problem we iterate on the Bellman equation (11) in
the following form

V̂j+1(z) = min
i

{
L(z, i) + βE

[
V̂j(z

′)|ε
]}

, (20)

where j denotes the iteration step. The solution to the problem are
functions V̂ (·) and ĥ(·) such that V̂ (z) = L(z, h(z))+βE

[
V̂ (g(z, h(z)))|ε

]
up to the required tolerance level.

The algorithm is as follows:
1. Choose a grid for the state variables, Z

This amounts to choosing both Z ⊆ Z and Z ⊂ Z.
2. Choose a functional form for the approximation of the value

function, V̂ (·) 39

Note that V̂ (·) is parameterized by a parameters vector b, which
is to be determined in step 4.1. Thus V̂ (·) ≡ V̂ (·; b), where there
is no danger of confusion we make the dependence on b implicit.

3. Choose the initial guess for the value function, V Z
0

4. Iterate on eq. (20), i.e. for j = 0, . . . , jmax

4.1 Using Z and V Z
j construct the interpolant V̂j(·) ≡ V̂ (·; bj)

38. In other words V̂ (·) is an interpolant
39. Actually, there is more to it than just choosing the functional form. As we do an

interpolation, besides the functional form we need to choose an interpolation scheme.
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4.2 Precalculate the expected value for the approximation of
the value function
To do this construct the interpolant V̂ e

j (z), z ∈ Z with
the property V̂ e

j (zi) = Eε′

[
V̂j(a1, a2, r, ε

′)|ε
]
, ∀a1, a2, r, ε :

zi = (a1, a2, r, ε) ∈ Z. This means that V̂ e
j (·) agrees with

Eε′

[
V̂j(·)|ε

]
on all grid points. This step is unnecessary but

saves computational time in step 4.3.
4.3 For each grid point zi ∈ Z use a numerical optimization

procedure to solve the minimization problem on the RHS
of (20) (replace E[V̂j(z

′)|ε] with V̂ e
j (z)), the optimal value

on the RHS gives V Z
j+1 and the optimal interest rate gives

HZ
j (with HZ defined analogously to V Z).

4.4 Verify the convergence of V Z

If ‖V Z
j+1 − V Z

j ‖ > Vtol then if j = jmax declare failure to
converge and quit, if j < jmax set j = j + 1 and go back to
step 4.1. Otherwise declare convergence, set V̂ (·) = V̂j(·),
and proceed to step 5.

5. Upon convergence recover the policy function
Using the same functional form as in step 2 use HZ

j obtained in
step 4.3 together with Z to construct an approximation ĥ(·) for
the policy function h(·).

In the following subsections we discuss some of the steps of the
algorithm in more detail.

A.1 Choice of the grid
Although we present steps 1 and 2 separately, they are not totally
independent of each other. The choice of the grid and the approxi-
mation/interpolation scheme have to be made with the view of each
other. On one hand the choice of the grid may be dictated by the cho-
sen interpolation scheme, an example would be the choice of Cheby-
shev polynomials interpolation, which desires the grid points to be
placed at the roots of the Chebyshev polynomial. Another exam-
ple can be Smolyak interpolation, which uses a carefully constructed
sparse grid to provide an alternative to the usual tensor product grid
interpolation. On the other hand the chosen grid may require a spe-
cific interpolation scheme that is flexible enough to accomodate such
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a grid. One example can be Spline interpolation, which is typically
used in problems that exhibit kinks in the policy function (such as
ours) due to the need to place some grid points arbitrarily in the re-
gion where the kink occurs. Another example would be Barycentric
interpolation, which is defined on triangular grids.

Since we use cubic spline interpolation the grid is required to
be rectangular. We therefore choose an independent grid for each
state variable, the details of which are discussed below, and con-
struct their tensor product. Denoting the unidirectional grids as
Gj , j = {a1, a2, r, ε} the four-dimensional grid is given by Z = Ga1 ⊗
Ga2 ⊗ Gr ⊗ Gε. The choices discussed below give us 103935 grid
points.

Due to the presence of the zero lower bound constraint in the
present problem the choice of the grid for individual state variables
requires some care. The ZLB constraint causes a kink in the policy
function therefore to capture the kink well and not to lose too much
accuracy in its neighbourhood more grid points need to be placed
around the kink. The obvious complication is that it is not known in
advance where the kink occurs moreover the location of the kink can
differ depending on the values of all four state variables and also the
kink can move substantially when we experiment with different model
parameters. Additionally, due to the curse of dimensionality problem
we have to be rather conservative in the choice of the number of grid
points. The grid boundaries are chosen such that they are never hit
in a five hundred thousand periods simulation.

In simulations the inflation expectations coefficient, a1, tends to
be positive and when negative the values are relatively small in abso-
lute value. Therefore we choose an asymmetric range of [−0.15,+1.5]
and make the grid quadratic around zero. We use 13 points in this
direction.

The output gap expectations coefficient, a2, tends to be very
volatile since the ZLB prevents the central bank frequently from sta-
bilizing the output gap, which also carries very small weight in the
central bank’s objective function. Therefore we use a wider range of
[−5,+5] and a larger number of points, 15. For some parameter val-
ues the ZLB becomes binding more frequently, which makes the a2
coefficient more volatile. In those cases we enlarge the range up to
[−10,+10] and use more grid points, up to 21 as needed. As in the
previous case we make the grid quadratic around zero.

As is apparent from equation (9) the dynamics of the r coefficient
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does not depend on central banks policy and is fully determined by
the stochastic process for ε. In our simulations the median value of
r is slightly below the shock variance therefore we center the grid
around σ2

ε . Moreover equation (8) reveals that the learning recursion
can be sensitive to small values of r and in fact our results confirm
that the policy function has a lot of curvature close to the lower grid
boundary. Therefore we place double the points below σ2

ε compared
to the number of points above and we make the grid linear below σ2

ε

while making it quadratic above. The grid boundaries are chosen as
[0.00001,0.0015], which is one order of magnitude below and above
the median of r. We choose 13 grid points in this direction.

Since we approximate the continuous AR(1) process for ε by a
Markov chain the grid should be determined by the chosen approx-
imation method. At the same time, however, since the kink in the
central bank’s policy function is especially apparent along the shock
dimension we require the approximating method to allow some flex-
ibility in choosing the grid points. This restricts available choices of
the approximation method.40

While Kopecky and Suen (2010) advocate the use of Rouwenhorst
method arguing that it delivers an approximation which represents the
stochastic properties of the underlying AR(1) process most accurately
(for a given number of grid points), especially for highly persistent pro-
cesses. In fact the main advantage of the Rouwenhorst method is that
it delivers comparable accuracy as other methods using a smaller num-
ber of nodes. We however need a large number of points to capture
the curvature of the value function and the kink of the policy func-
tion accurately, hence, this advantage of the Rouwenhorst method
would not be of much benefit to us. Furthermore, and more impor-
tantly, in Rouwenhorst method the grid is created as evenly spaced
and the grid boundaries are proportional to the standard deviation of
the AR(1) process being approximated while the factor of proportion
is positively related to the number of grid points. This means that for
a large number of grid points the grid would be unnecessarily wide
(thus sparse) and we would not be able to choose the location of the
nodes either, leaving us unable to place them where we expect the
kink to occur.

Therefore we approximate the shock’s stochastic process using the
Tauchen method (Tauchen 1986). This method also distributes the

40. This is also a reason to favour Markov chain approximation over using Gauss-
Hermitte quadrature.
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grid points evenly but there is no restriction that would prevent us
from choosing the points arbitrarily, in fact the author himself men-
tions that the choice of equidistant grid points is mere convenience
and that there is likely to be more efficient placement of the nodes (p.
179). We therefore choose the grid points arbitrarily and use Tauchen
method to determine the transition probabilities. The rationale for
this choice is that for a given number of nodes we insert an additional
node in the region of interest, which should not harm the quality of
the approximation. Since we are using a rather large number of points
their placement should not be much of a concern.

We choose the grid boundaries to be ±5σε. This value seems
extreme, however, even with a rather generous choice of ±3.5σε (a
typical value in practice is ±2.5σε) we observed about 0.5% of the
shocks in our simulations to hit the grid boundary. Since we focus
on the effect of the zero lower bound on central bank’s response to
shocks and since the ZLB is associated with especially large shocks we
better adopted a wide grid. Another point worth mentioning is that
when drawing a large shock when calculating the impulse responses
we still need some room for drawing more bad shocks after the initial
impulse and the grid has to allow for this. For calculating the impulse
responses we use shocks as large as 4σε.

With as wide grid as we use we need a large number of grid points.
We use 41 points in total and place two thirds of the points in the neg-
ative domain while making the grid linear and one third of the points
we place in the positive domain and make the grid quadratic. The ra-
tionale for this choice is that the kink occurs for negative values of the
shock and given our parameterization it may not be located too close
to zero thus quadratic grid in this region would be inadequate. For
some combinations of parameters, however, the ZLB becomes binding
much closer to zero and in such cases we make the grid quadratic.

For some model parameters configurations (typically high β, high ρ
and low σ) the ZLB binds so frequently and leads to so high volatility
that the standard parameterization described above is inadequate.
Either the grid boundaries are hit in the simulations or we may not
obtain convergence. In such cases it is necessary to expand the grid
boundaries and increase the number of grid points in some dimensions.
We increase the upper bound on a1 up to 3 and enlarge the grid
boundaries for a2 up to ±10, at the same time we increase the number
of grid points in these dimension to 17 and 21, respectively, which gives
us 190281 points in total.
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A.2 The Interpolation Scheme
To gain more flexibility in approximating the value and policy func-
tions around the kink we use cubic splines in the B-spline form,
which is especially convenient for numerical computations (especially
in higher dimensions). Following de Boor (1978) we give a brief (and
somewhat sketchy) description of the ideas underlying B-spline inter-
polation.41

Let t = {ti}n+k
i=1 be a non-decreasing sequence of knots and let Sk,t

and Bi,k,t be a Spline and an i-th B-spline, respectively, of order k
given the sequence of knots t. Making the dependence on k and t
implicit we may denote them as S and Bi where there is no danger
of confusion. A spline function is a piecewise polynomial, which sat-
isfies certain continuity conditions captured by the knot sequence t.
Typically, splines of order k are Ck−2 functions (e.g. standard cubic
splines have continuous second derivative). An i-th B-spline of order
k is defined by the recursive relationship42

Bi,k(x) =
x− ti

ti+k−1 − ti
Bi,k−1(x) +

ti+k − x

ti+k − ti+1
Bi+1,k−1(x), (21)

∀x ∈ R, with Bi,1 = 1, x ∈ [ti, ti+1), and 0 otherwise. Among the
properties of Bi belong the following, Bi is positive on and zero outside
the interval [ti, ti+k], only k neighbouring B-splines can be non-zero on
any particular interval [tj , tj+1], namely Bj−k+1, . . . , Bj , and

∑
iBi =

1. It can then be shown that the sequence of B-splines, {Bi}ni=1, forms
a basis for the linear space of splines, i.e. Sk,t = {

∑
i αiBi,k,t : αi ∈

R,∀i}. Sk,t ∈ Sk,t are considered functions on [tk, tn+1].
Given a set of Lagrange data, {(yi, xi)}nx

i=1 with xi strictly increas-
ing, we can construct a spline interpolant, S, by a suitable choice
of t (among other requirements tk ≤ x1 and tn+1 ≥ xnx) and by
solving the system of the following interpolation conditions for αi,∑

i αiBi(xj) = yj , j = 1, . . . , nx.
In multiple dimensions then the spline S ∈ Sm can be constructed

as the tensor product of the univariate B-splines. Taking the two-
dimensional case as an example, S2 = Sk,t⊗Sh,s = {

∑
i,j γi,jBi,k,tB̃j,h,s :

γi,j ∈ R,∀i, j}. For a set of Lagrange data {{(yi,j , xi,j)}n
1
x

i=1}
n2
x

j=1, xi,j ∈
{x1i }i ⊗{x2j}j , {x1i }i and {x2j}j strictly increasing, the parameters γi,j

41. The most relevant are chapters IX, XIII, and XVII
42. An alternative definition involves divided differences of the function (t−x)k−1

+ given
x, see chapter IX
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of S ∈ S2 are determined by the system of interpolation conditions∑
i,j γi,jBi(x

1
l )B̃j(x

2
r) = yl,r,∀l, r. Note that it is not necessary to

solve this system as the parameters γi,j can be calculated efficiently
knowing Bi(x

1
l ), B̃j(x

2
r) and the associated parameters vectors α and

α̃ that define S and S̃.
The above then maps in our algorithm as follows, in step 2 for

j = {a1, a2, r, ε} we set kj = 4 and we construct the knot sequences
tj , thus this is done only once. In step 4.1 we calculate the coefficients
αj and γ and we evaluate the basis functions Bj

i,kj ,tj
on each grid point

in dimension j. Hence this is done only once per iteration. Finally, in
steps 4.2 and 4.3 we evaluate the interpolant S4 at different points as
needed. This is done many times in each iteration and it is the most
computationally expensive part of the algorithm due to the need to
bracket the point zj on the grid Gj .43

A.3 Details of the Value Function Iteration
Algorithm
For the initial guess in step 3 we use the zero function, which we
found to work well, although there are other possibilities, some of
which might even result in smaller number of iterations needed for
convergence. For the version with zero lower bound we make the
use of the non-zero lower bound solution to construct a better initial
guess. We start with the non-ZLB value function and iterate the
non-ZLB policy function (with the ZLB imposed on it) skipping the
optimization step 4.3 until convergence. We use the resulting value
function as the initial guess and redo step 4.

When evaluating the right-hand-side of the Bellman equation,
(20), one needs to calculate the expected value term. The conven-
tional approach is the straightforward calculation of the expectations
”on-the-fly” whenever the RHS needs to be evaluated (i.e. skipping
step 4.2). This however results in unnecessary and often very costly
overhead. We therefore precalculate the expected value function be-
fore the optimization problem is solved hence avoiding unnecessary
calculations of the integral that defines the expected value.44 Dur-

43. To carry out the required calculations we use a modernised version of the original For-
tran library from de Boor (1978) available at https://github.com/jacobwilliams/bspline-
fortran

44. In our case, due to the Markov chain approximation, the integral reduces to a sum.
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ing the optimization step, 4.3, we then evaluate an approximation of
the expected value term avoiding unnecessary repeated calculations.
This approach is advocated for example in Judd et al. (2017) and
most recently used in Druedahl and Jorgensen (2017).

To solve the optimization problem in step 4.3 we use the Golden
Section Search method (see Press et al. 1986). This is a derivative
free method and is very robust, however, it has linear rate of con-
vergence, which makes it somewhat slow. Alternatively we could use
for instance the Newton-Raphson method, which has a quadratic rate
of convergence, it however requires the first two derivatives of the
value function and a good initial guess otherwise it can be unsta-
ble. We decided to favour robustness of the Golden section search
method. As a technical side note, before solving the minimization
problem we tranformed it to the one of maximization. This is for
mere convenience to be able to reuse existing libraries. Observing
that minU = −max{−U} we transformed eq. (10) in

V (a1, a2, r, ε) = −max
i

{
−(π2

t + λx2t )− βE
[
V (a′1, a

′
2, r

′, ε′|ε)
]}

(22)

and in each iteration step we applied the numerical optimization rou-
tine on that.

A.4 Generalized Impulse Responses
Here we present an overview of the key ideas from Gallant, Rossi, and
Tauchen (1993).

Let {yt}∞t=−∞, y ∈ RM be a strictly stationary process with a con-
ditional density function that depends upon at most L lags. Denote
the L lags of yt+1 by xt = (y′t−L+1, . . . , y

′
t) ∈ RML and write f(y|x)

for the (one-step ahead) conditional density, which is time invariant
(i.e. does not depend on t) due to the strict stationarity assumption.

Define the conditional mean profile {ŷj(x)}∞j=0 corresponding to
initial condition x by ŷj(x) = E[yt+j |xt = x] =

∫
yf j(y|x)dy, where

f j(y|x) denotes the j-step ahead conditional density

f j(y|x) =
∫

. . .

∫ [
j−1∏
i=0

f(yi+1|yi−L+1, . . . , yi)

]
dy0 . . . dyj−1, (23)

with x = (y′−L+1, . . . , y
′
0)

′. (If a dummy variable of integration coin-
cides with an element of x then that integration is omitted.)
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For reasons explained in section 4.2.1 we use a conditional median
profile instead. Let us denote it {ỹj(x)}∞j=0 to distinguish from the
mean profile and define it as ỹj(x)|

∫ ỹj(x)
ymin

f j(y|x)dy ≥ 0.5∧
∫ ymax

ỹj(x)
f j(y|x)dy ≥

0.5 with f j(y|x) defined as above. In what follows ŷj would be re-
placed with ỹj .

Let δy+ represent a small perturbation to the contemporaneous y0
and set x+ = (y′−L+1, . . . , y

′
0)

′+(0, 0, . . . , δy+
′
)′ and x0 = (y′−L+1, . . . , y

′
0)

′.
Thus x+ is an initial condition corresponding to an impulse added to
contemporaneous y0 and x0 represents the base case with no impulse.
Then define ŷ+j ≡ ŷj(x

+) and ŷ0j ≡ ŷj(x
0).

The non-linear impulse response is then naturally defined as the
net effect of the impulse δy+, i.e. ŷ+j − ŷ0j . The integrals in the
conditional moment profile are then calculated by Monte Carlo in-
tegration. Let {yrj}∞j=1, r = 1, 2, . . . , R denote R simulated realiza-
tions of the process starting from x0 = x. In other words, yr1 is
a random draw from f(y|x) with x = (y′−L+1, . . . , y

′
0)

′, yr2 is a ran-
dom draw from f(y|x) with x = (y′−L+2, . . . , y

′
0, y

r′
1 )

′, etc. Then
ŷj =

∫
. . .

∫
yj

[∏j−1
i=0 f(yi+1|yi−L+1, . . . , yi)

]
dy0 . . . dyj

.
= 1

R

∑R
r=1 y

r
j

(analogously for ỹj).
To obtain some sort of representative impulse response, let’s call it

Generalized Impulse Response, one can either choose a representative
initial condition x0 or calculate the set of non-linear impulse responses
for a large number of different initial conditions and average the re-
sponses over the initial conditions. The former strategy is simpler but
perhaps less representative of the dynamics of the economy. In our
model, however, it is useful for a direct comparison to the zero lower
bound, which would otherwise not be possible.

With the view of the preceding discussion we approach the com-
putations as follows. After we obtain the policy function in step 5,
we first calculate the ergodic set of the economy running m indepen-
dent simulations for nb + 1 periods and discard the first nb of them.
This gives us a sample of m states of the economy, which we call the
Ergodic Set and which we use as initial conditions for calculating the
non-linear impulse responses. We use m = 25000 and nb = 50000, we
also experimented with values as low as m = 5000 and nb = 2000 and
the results were not noticeably different.

To calculate the generalized impulse response we calculate the
non-linear impulse response for each element in the ergodic set us-
ing R = 2000 and, in each period, taking the median among these R
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simulations.45 Then, for the whole set of impulse responses, we sort
the observations in each period using a quicksort algorithm46 and re-
port the desired quantiles and the mean. To generate the shocks in the
simulations we draw random values for the innovations of the AR(1)
process (see eq. 18) and interpolate the policy function for values of
ε that do not lie on the grid. For generating the random numbers
we use the Fast Mersenne Twister generator (commonly referred to as
SFMT19937).47

45. When using the mean profile instead of the median, we used R = 100. We also tried
R = 500 and the differences were very small, almost unnoticeable. When using the median
profile, though, a higher R is necessary to avoid jumps in the impulse response. When
calculating an NIR for only a single initial condition (as opposed to calculating the whole
distribution across which we would aggregate) we used R = 100000.

46. See e.g. Press et al. (1986)
47. We use the implementation from Intel Math Kernel Library
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B Additional Figures
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Figure 19: Impulse responses to a large shock (−2.5σε)
The same as Figure 9 except the impulse responses are constructed using the mean profiles
(as opposed to median). Red lines are for the ZLB policy, blue without the ZLB, and green
the long-run equilibrium. The initial condition is the median from the ergodic set of the
constrained economy.
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Figure 20: The whole distribution of interest rates normalized so that the
ZLB constraint equals zero (i.e. ZLB gap is defined as the interest rate
minus the value of ZLB); ZLB vs non-ZLB economy. Using mean as the
future aggregator.
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(a)

(b)

Figure 21: Impulse response to a shock occuring after a long liquidity trap.
Red – constrained policy, blue – unconstrained policy, and green – long-run policy. The
initial condition is the state of a constrained economy which has been in a liquidity trap
for the last 15 periods (except the counterfactual shock is at its empirical median). The
economy had been in the median state before the liquidity trap occured. Panel (a) –
current period response to shocks of varying sizes. Panel (b) – response to a large shock
(−2.5σε).
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Figure 22: Non-linear impulse response to shocks of varying sizes.
The size of the shock ranges from −0.2σε to −4σε with increment of 0.2σε. The initial
condition is the median state from the ergodic set of the constrained economy.
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Figure 23: Non-linear impulse response to shocks of varying sizes.
The size of the shock ranges from −0.2σε to −4σε with increment of 0.2σε. The initial
condition are the lower and upper quartile states from the ergodic set of the constrained
economy. Note that the ZLB constraint is defined as the maximum allowable negative
deviation from the counterfactual policy without the impulse and as such it is not a
horizontal line.
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Figure 24: Median non-linear impulse response to shocks of varying sizes.
The size of the shock ranges from −0.1σε to −4σε with increment of 0.1σε (horizontal axis
shows time).
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Figure 25: 75% non-linear impulse response to shocks of varying sizes.
Future aggregator is the median. Compared to Figure 24 this chart shows overshooting of
the interest rate and little more overshooting of inflation.
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Figure 26: The precentage of periods in which ZLB binds.
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Figure 27: Generalized impulse response for different γ.
Median responses only.
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Figure 28: Generalized impulse response for different λ.
Median responses only.
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Figure 29: Generalized impulse response for different ρ.
Median responses only.
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